大家可能都有这样的经历,刚入职一家企业时,同事往往会给你分享一些文档资料,有可能是产品信息、规章制度等等。这些文档有的过于冗长,很难靠前时间找到想要的内容。有的已经有了新版本,但员工使用的还是老版本。
基于这种背景,我们可以利用 Easysearch 加 LLM 实现一个内部知识的 QA 问答系统。这个系统将利用 LangChain 框架调用本地部署的大模型和 Easysearch,实现理解员工的提问,并基于最新的文档,给出精准答案。
整个框架分为四个部分:
本次我们使用的资料是 “INFINI 产品安装手册.pdf” ,文档部分内容展示如下:
首先我们使用 LangChain 的 document_loaders 来加载文件。document_loaders 集成了数百种数据源格式,可以很方便的加载数据。我们的数据的 pdf 格式的,导入 PyPDFLoader 类来进行处理。代码如下:
import os # 导入 Document Loaders from langchain_community.document_loaders import PyPDFLoader # Load Pdf base_dir = '.\\easysearch' # 文档的存放目录 docs = [] for file in os.listdir(base_dir): file_path = os.path.join(base_dir, file) if file.endswith('.pdf'): loader = PyPDFLoader(file_path) documents.extend(loader.load())
上面的代码将 pdf 文件的内容存储在 docs 这个列表中,以便后续进行处理。
一个文件的文本内容可能很大,无法适应许多模型的上下文窗口,也不利于检索和存储。因此,通常我们会将文本内容分割成更小的块,这将帮助我们在运行时只检索文档中最相关的部分。LangChain 提供了工具来进行处理文本分割,非常方便。
我们将把文档分割成 1000 个字符的块,每个块之间有 200 个重叠字符。这种重叠有助于减少将语句与相关的重要上下文分离的可能性。
# 2.将Documents切分成块 from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20) chunked_documents = text_splitter.split_documents(docs)
上面的代码将 docs 的内容按 1000 字符大小进行切分,存储在 chunked_documents 中,以便后续进行处理。
注意,实际运行中,切分及重叠的大小,都会影响应用效果,需自行调试。
接下来,我们将这些文本块转换成向量的形式,并存储在一个向量数据库中。在本示例中,我们使用 mxbai-embed-large 模型来生成向量,然后将向量和原始内容存入 easysearch 。
本地部署模型,我使用的是 ollama ,大家可以使用自己喜欢的工具。
# 3. 定义embedding模型 from langchain_community.embeddings import OllamaEmbeddings ollama_emb = OllamaEmbeddings( model="mxbai-embed-large", ) # 4. 定义 easysearch 集群的信息,以及存放向量的索引名称 infini from langchain_community.vectorstores import EcloudESVectorStore ES_URL = "https://192.168.56.3:9200" USER = "admin" PASSWORD = "e5ac1b537785ae27c187" indexname = "infini" docsearch = EcloudESVectorStore.from_documents( chunked_documents, ollama_emb, es_url=ES_URL, user=USER, password=PASSWORD, index_name=indexname, verify_certs=False, )
通过上面的步骤,我们成功将文本块转换成了向量,并存入到了 easysearch 集群的 infini 索引中。
我们看看 infini 索引内容是怎样的
text 字段存放了文本块的原始内容,vector 字段存放着对应的向量表示。
在这一步,我们会定义一个生成式大模型。然后创建一个 RetrievalQA 链,它是一个检索式问答模型,用于生成问题的答案。
在 RetrievalQA 链中有下面两大重要组成部分。
# 5. Retrieval 准备模型和Retrieval链 import logging # MultiQueryRetriever工具 from langchain.retrievers.multi_query import MultiQueryRetriever # RetrievalQA链 from langchain.chains import RetrievalQA # # 设置Logging logging.basicConfig() logging.getLogger('langchain.retrievers.multi_query').setLevel(logging.INFO) # # 实例化一个大模型工具 from langchain_community.chat_models import ChatOllama llm = ChatOllama(model="qwen2:latest") from langchain.prompts import PromptTemplate my_template = PromptTemplate( input_variables=["question"], template="""You are an AI language model assistant. Your task is to generate 3 different versions of the given user question in Chinese to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of distance-based similarity search. Provide these alternative questions separated by newlines. Original question: {question}""", ) # # 实例化一个MultiQueryRetriever retriever_from_llm = MultiQueryRetriever.from_llm(retriever=docsearch.as_retriever(), llm=llm,prompt=my_template,include_original=True) # # 实例化一个RetrievalQA链 qa_chain = RetrievalQA.from_chain_type(llm,retriever=retriever_from_llm)
这里我们使用 ollama 在本地部署一个 qwen2 大模型,负责问题改写和生成答案。
启动 qwen2 大模型:ollama run qwen2
我们获取到用户问题后,先通过 MultiQueryRetriever 类调用大模型 qwen2 进行改写,生成 3 个同样语义的问题,然后再调用 easyearch 进行向量检索,搜索相关内容。
最后把所有相关内容,合并、去重后,与原始问题一起提交给大模型 qwen2,进行答案生成。
虽然这里使用的是向量检索,但实际上我们可以同时使用全文检索和向量检索。这也是使用 easysearch 作为检索库的优势之一。
这一步我们创建一个 Flask 应用(需要安装 Flask 包)来接收用户的问题,并生成相应的答案,最后通过 index.html 对答案进行渲染和呈现。
在这个步骤中,我们使用了之前创建的 RetrievalQA 链来获取相关的文档和生成答案。然后,将这些信息返回给用户,显示在网页上。
# 6. Q&A系统的UI实现 from flask import Flask, request, render_template app = Flask(__name__) # Flask APP @app.route('/', methods=['GET', 'POST']) def home(): if request.method == 'POST': # 接收用户输入作为问题 question = request.form.get('question') # RetrievalQA链 - 读入问题,生成答案 result = qa_chain({"query": question}) # 把大模型的回答结果返回网页进行渲染 return render_template('index.html', result=result) return render_template('index.html') if __name__ == "__main__": app.run(host='0.0.0.0',debug=True,port=5000)
我们模仿用户进行提问。
Q&A 系统进行回答,回答速度取决于本地的计算资源。
内容校验,在原始文档内用 ctrl+F 搜索关键字 LOGGING_ES_ENDPOINT 得到如下内容。
嗯,回答的还不错,达到预期目的。如果还有其他要求,可修改 my_template 中的提示词或者替换成别的大模型也是可以的。
通过这次示例,我们演示了如何基于 LangChain 和 easysearch 以及大模型,快速开发出一个内部知识问答系统。怎么样,是不是觉得整个流程特别简单易懂?
如有任何问题,请随时联系我,期待与您交流!
无论你是 Easysearch 的老用户,还是靠前次听说这个名字,只要你对 INFINI Labs 旗下的 Easysearch 产品感兴趣,或者是希望了解 Easysearch,都可以参加这次活动。
详情查看:Easysearch 征文活动
TAG:问答系统